skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosenblum, Serge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bosonic qubits encoded in continuous-variable systems provide a promising alternative to two-level qubits for quantum computation and communication. So far, photon loss has been the dominant source of errors in bosonic qubits, but the significant reduction of photon loss in recent bosonic qubit experiments suggests that dephasing errors should also be considered. However, a detailed understanding of the combined photon loss and dephasing channel is lacking. Here, we show that, unlike its constituent parts, the combined loss-dephasing channel is non-degradable, pointing towards a richer structure of this channel. We provide bounds for the capacity of the loss-dephasing channel and use numerical optimization to find optimal single-mode codes for a wide range of error rates. 
    more » « less